535 research outputs found

    OGLE-2011-BLG-0265Lb: A Jovian Microlensing Planet Orbiting an M Dwarf

    Get PDF
    We report the discovery of a Jupiter-mass planet orbiting an M-dwarf star that gave rise to the microlensing event OGLE-2011-BLG-0265. Such a system is very rare among known planetary systems and thus the discovery is important for theoretical studies of planetary formation and evolution. High-cadence temporal coverage of the planetary signal, combined with extended observations throughout the event, allows us to accurately model the observed light curve. However, the final microlensing solution remains degenerate, yielding two possible configurations of the planet and the host star. In the case of the preferred solution, the mass of the planet is Mp = 0.9 0.3 MJ, and the planet is orbiting a star with a mass M = 0.22 0.06 M. The second possible configuration (2σ away) consists of a planet with Mp = 0.6 0.3 MJ and host star with M = 0.14 0.06 M. The system is located in the Galactic disk 3–4 kpc toward the Galactic bulge. In both cases, with an orbit size of 1.5–2.0 AU, the planet is a “cold Jupiter”—located well beyond the “snow line” of the host star. Currently available data make the secure selection of the correct solution difficult, but there are prospects for lifting the degeneracy with additional follow-up observations in the future, when the lens and source star separate

    Towards A Census of Earth-mass Exo-planets with Gravitational Microlensing

    Full text link
    Thirteen exo-planets have been discovered using the gravitational microlensing technique (out of which 7 have been published). These planets already demonstrate that super-Earths (with mass up to ~10 Earth masses) beyond the snow line are common and multiple planet systems are not rare. In this White Paper we introduce the basic concepts of the gravitational microlensing technique, summarise the current mode of discovery and outline future steps towards a complete census of planets including Earth-mass planets. In the near-term (over the next 5 years) we advocate a strategy of automated follow-up with existing and upgraded telescopes which will significantly increase the current planet detection efficiency. In the medium 5-10 year term, we envision an international network of wide-field 2m class telescopes to discover Earth-mass and free-floating exo-planets. In the long (10-15 year) term, we strongly advocate a space microlensing telescope which, when combined with Kepler, will provide a complete census of planets down to Earth mass at almost all separations. Such a survey could be undertaken as a science programme on Euclid, a dark energy probe with a wide-field imager which has been proposed to ESA's Cosmic Vision Programme.Comment: 10 pages. White Paper submission to the ESA Exo-Planet Roadmap Advisory Team. See also "Inferring statistics of planet populations by means of automated microlensing searches" by M. Dominik et al. (arXiv:0808.0004

    Extremal black holes in D=5: SUSY vs. Gauss-Bonnet corrections

    Full text link
    We analyse near-horizon solutions and compare the results for the black hole entropy of five-dimensional spherically symmetric extremal black holes when the N=2 SUGRA actions are supplied with two different types of higher-order corrections: (1) supersymmetric completion of gravitational Chern-Simons term, and (2) Gauss-Bonnet term. We show that for large BPS black holes lowest order \alpha' corrections to the entropy are the same, but for non-BPS are generally different. We pay special attention to the class of prepotentials connected with K3\times T^2 and T^6 compactifications. For supersymmetric correction we find beside BPS also a set of non-BPS solutions. In the particular case of T^6 compactification (equivalent to the heterotic string on T4×S1T^4\times S^1) we find the (almost) complete set of solutions (with exception of some non-BPS small black holes), and show that entropy of small black holes is different from statistical entropy obtained by counting of microstates of heterotic string theory. We also find complete set of solutions for K3\times T^2 and T^6 case when correction is given by Gauss-Bonnet term. Contrary to four-dimensional case, obtained entropy is different from the one with supersymmetric correction. We show that in Gauss-Bonnet case entropy of small ``BPS'' black holes agrees with microscopic entropy in the known cases.Comment: 28 pages; minor changes, version to appear in JHE

    MAGIC detection of sub-TEV emission from gravitationally lensed blazar QSO B0218+357

    Get PDF
    The blazar QSO B0218+357 is the first gravitationally lensed blazar detected in the very high energy (VHE, E > 100 GeV) gamma-ray spectral range (Ahnen et al. 2016). It is gravitationally lensed by the intervening galaxy B0218+357G (z l = 0.68466 +/- 0.00004, Carilli et al. 1993), which splits the blazar emission into two components, spatially indistinguishable by gamma-ray instruments, but separated by a 10-12 days delay. In July 2014 a flare from QSO B0218+357 was observed by the Fermi-LAT (Large Area Telescope, Atwood et al. 2009, Ackermann et al. 2012), and followed-up by the MAGIC (Major Atmospheric Gamma Imaging Cherenkov) telescopes, a stereoscopic system of two 17m Imaging Atmospheric Cherenkov Telescopes located on La Palma, Canary Islands (Aleksić et al. 2016a, 2016b), during the expected time of arrival of the delayed component of the emission. MAGIC could not observe the leading image due to the Full Moon. The MAGIC and Fermi-LAT observations were accompanied by optical data from KVA telescope at La Palma, and X-ray observations by Swift-XRT (Fig. 1 left). Variability in gamma-rays was of the order of one day, while no variability correlated with gamma-rays was observed at lower energies. The flux ratio of the leading to trailing image in HE gamma-rays was larger than in the flare of QSO B0218+357 observed by Fermi-LAT in 2012 (Cheung et al. 2014). Changes in the observed flux ratio can be caused by gravitational microlensing on individual stars in the host galaxy (Neronov et al. 2015), or by other compact objects like for ex. clumps in giant molecular clouds (Sitarek & Bednarek 2016)

    Difference imaging photometry of blended gravitational microlensing events with a numerical kernel

    Get PDF
    The numerical kernel approach to difference imaging has been implemented and applied to gravitational microlensing events observed by the PLANET collaboration. The effect of an error in the source-star coordinates is explored and a new algorithm is presented for determining the precise coordinates of the microlens in blended events, essential for accurate photometry of difference images. It is shown how the photometric reference flux need not be measured directly from the reference image but can be obtained from measurements of the difference images combined with the knowledge of the statistical flux uncertainties. The improved performance of the new algorithm, relative to ISIS2, is demonstrated

    Limits on additional planetary companions to OGLE-2005-BLG-390L

    Full text link
    We investigate constraints on additional planets orbiting the distant M-dwarf star OGLE-2005-BLG-390L, around which photometric microlensing data has revealed the existence of the sub-Neptune-mass planet OGLE-2005-BLG-390Lb. We specifically aim to study potential Jovian companions and compare our findings with predictions from core-accretion and disc-instability models of planet formation. We also obtain an estimate of the detection probability for sub-Neptune mass planets similar to OGLE-2005-BLG-390Lb using a simplified simulation of a microlensing experiment. We compute the efficiency of our photometric data for detecting additional planets around OGLE-2005-BLG-390L, as a function of the microlensing model parameters and convert it into a function of the orbital axis and planet mass by means of an adopted model of the Milky Way. We find that more than 50 % of potential planets with a mass in excess of 1 M_J between 1.1 and 2.3 AU around OGLE-2005-BLG-390L would have revealed their existence, whereas for gas giants above 3 M_J in orbits between 1.5 and 2.2 AU, the detection efficiency reaches 70 %; however, no such companion was observed. Our photometric microlensing data therefore do not contradict the existence of gas giant planets at any separation orbiting OGLE-2005-BLG-390L. Furthermore we find a detection probability for an OGLE-2005-BLG-390Lb-like planet of around 2-5 %. In agreement with current planet formation theories, this quantitatively supports the prediction that sub-Neptune mass planets are common around low-mass stars.Comment: 10 pages, 4 figures, accepted by A&

    A systematic fitting scheme for caustic-crossing microlensing events

    Get PDF
    We outline a method for fitting binary-lens caustic-crossing microlensing events based on the alternative model parameterisation proposed and detailed in Cassan (2008). As an illustration of our methodology, we present an analysis of OGLE-2007-BLG-472, a double-peaked Galactic microlensing event with a source crossing the whole caustic structure in less than three days. In order to identify all possible models we conduct an extensive search of the parameter space, followed by a refinement of the parameters with a Markov Chain-Monte Carlo algorithm. We find a number of low-chi2 regions in the parameter space, which lead to several distinct competitive best models. We examine the parameters for each of them, and estimate their physical properties. We find that our fitting strategy locates several minima that are difficult to find with other modelling strategies and is therefore a more appropriate method to fit this type of events.Comment: 12 pages, 11 figure

    OGLE-2005-BLG-018: Characterization of Full Physical and Orbital Parameters of a Gravitational Binary Lens

    Get PDF
    We present the analysis result of a gravitational binary-lensing event OGLE-2005-BLG-018. The light curve of the event is characterized by 2 adjacent strong features and a single weak feature separated from the strong features. The light curve exhibits noticeable deviations from the best-fit model based on standard binary parameters. To explain the deviation, we test models including various higher-order effects of the motions of the observer, source, and lens. From this, we find that it is necessary to account for the orbital motion of the lens in describing the light curve. From modeling of the light curve considering the parallax effect and Keplerian orbital motion, we are able to measure not only the physical parameters but also a complete orbital solution of the lens system. It is found that the event was produced by a binary lens located in the Galactic bulge with a distance 6.7±0.36.7\pm 0.3 kpc from the Earth. The individual lens components with masses 0.9±0.3 M⊙0.9\pm 0.3\ M_\odot and 0.5±0.1 M⊙0.5\pm 0.1\ M_\odot are separated with a semi-major axis of a=2.5±1.0a=2.5 \pm 1.0 AU and orbiting each other with a period P=3.1±1.3P=3.1 \pm 1.3 yr. The event demonstrates that it is possible to extract detailed information about binary lens systems from well-resolved lensing light curves.Comment: 19 pages, 6 figure

    MOA-2010-BLG-328LB: A sub-Neptune orbiting very late M dwarf?

    Get PDF
    We analyze the planetary microlensing event MOA-2010-BLG-328. The best fit yields host and planetary masses of Mh = 0.11 ± 0.01 M Èź and Mp = 9.2 ± 2.2 M ⊕, corresponding to a very late M dwarf and sub-Neptune-mass planet, respectively. The system lies at D L = 0.81 ± 0.10 kpc with projected separation r ⊄ = 0.92 ± 0.16 AU. Because of the host\u27s a priori unlikely close distance, as well as the unusual nature of the system, we consider the possibility that the microlens parallax signal, which determines the host mass and distance, is actually due to xallarap (source orbital motion) that is being misinterpreted as parallax. We show a result that favors the parallax solution, even given its close host distance. We show that future high-resolution astrometric measurements could decisively resolve the remaining ambiguity of these solutions. © 2013. The American Astronomical Society. All rights reserved
    • 

    corecore